第七章 蜗杆传动

一、简答题:

- (1) 在材料铸铁或 $\sigma_b > 300MPa$ 的蜗轮齿面接触强度计算中,为什么许用应力与齿面相对滑动速度有关?
- (2) 说明蜗杆头数 z₁及蜗轮齿数 z₂的多少对蜗杆传动性能的影响?
- (3) 闭式蜗杆传动为什么要进行热平衡计算?
- (4) 蜗杆传动有哪些特点?应用于什么场合?
- (5) 蜗杆导程角γ大小不同时,其相应的蜗杆加工方法有何特点?蜗杆传动以 什么面定义标准模数?
- (6) 为什么要引入蜗杆直径系数?如何选用?它对蜗杆传动的强度、刚度、 啮合效率及尺寸有何影响?
- (7) 蜗杆传动的正确啮合条件是什么?自锁条件是什么?
- (8) 影响蜗杆传动效率的主要因素有哪些?导程角γ的大小对效率有何影响?
- (9) 为什么蜗杆传动只计算蜗轮齿的强度,而不计算蜗杆齿的强度?在什么情况下需要进行蜗杆的刚度计算?许用应力如何确定?
- (10) 蜗杆传动的热平衡如何计算?可采用哪些措施来改善散热条件?

二、填空题:

(1)	减速蜗杆传动中,	主要的失效形式为_	`	`	,	常发生
	在。					

- (2) 普通圆柱蜗杆传动变位的主要目的是____和___。
- (3) 有一标准普通圆柱蜗杆传动,已知 z_1 = 2, q = 8, z_2 = 42,中间平面上模数 m = 8mm,压力角 α = 20 0 ,蜗杆为左旋,则蜗杆分度圆直径 d_1 = _____mm,传动中心距 a = _____mm,传动比 i = _____。蜗杆分度圆柱上的螺旋线角升 γ =arctan _____ 蜗轮为 _____旋,蜗轮分度圆柱上的螺旋角

	eta = $^{\circ}$
(4)	蜗杆传动中,蜗杆导程角为 γ ,分度圆圆周速度为 v_1 ,则其滑动速度 v_s
	为,它使蜗杆蜗轮的齿面更容易发生和。
(5)	两轴交错角为90°的蜗杆传动中,其正确的啮合条件是,和_
	(等值同向)。
(6)	闭式蜗杆传动的功率损耗,一般包括三个部分:,和。
(7)	在蜗杆传动中,蜗杆头数越少,则传动效率越低,自锁性越好,一般蜗
	杆头数取 $z_1 =$ 。
(8)	阿基米德蜗杆传动在中间平面相当于与相啮合。
(9)	变位蜗杆传动只改变的尺寸,而尺寸不变。
(10)	在标准蜗杆传动中,当蜗杆为主动时,若蜗杆头数 z_1 和模数 m 一定时,
	增大直径系数 q ,则蜗杆刚度; 若增大导程角 γ ,则传动效率。
(11)	蜗杆传动发热计算的目的是防止而产生齿面失效,热平衡计算的条件是单位时间内等于同时间内的。
(12)	蜗杆传动设计中,通常选择蜗轮齿数 $z_2 > 26$ 是为了; $z_2 < 80$ 为了
	防止或。
三、选	译集填空:
(1)	在标准蜗杆传动中,蜗杆头数一定,加大蜗杆特性系数,将使传动效
	率。
	A. 增加; B. 减小;
	C. 不变; D. 增加或减小;
(2)	为了提高蜗杆的刚度,应。
	A. 增大蜗杆的直径系数 ; B. 采用高强度合金钢作蜗杆材料;
(2)	C. 增加蜗杆硬度,减小表面粗糙值。
(3)	
	A. 降低; B. 提高;

C. 不变:

- D. 可能提高,可能降低。
- (4) 蜗杆传动的正确啮合条件中,应除去。

A. $m_{a1} = m_{t2}$;

B. $\alpha_{a1} = \alpha_{t2}$;

C. $\beta_1 = \beta_2$;

D. 螺旋方向相同。

- (5) 在蜗杆传动中,引进特性系数q的目的是___。
 - A. 便于蜗杆尺寸的计算:
 - B. 容易实现蜗杆传动中心距的标准化;
 - C. 提高蜗杆传动的效率。
 - D. 减少蜗轮滚刀的数量,利于刀具标准化。
- (6) 计算蜗杆传动比时,公式 是错误的。

A. $i = w_1 / w_2$;

B. $i = n_1 / n_2$;

C. $i = d_2 / d_1$;

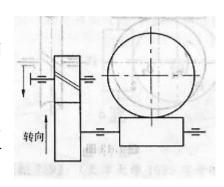
D. $i = z_2 / z_1$ o

(7) 采用蜗杆变位传动时___。

A. 仅对蜗杆进行变位;

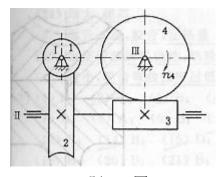
B. 仅对蜗轮进行变位;

- C. 同时对蜗杆蜗轮进行变位。
- (8) 对于普通圆柱蜗杆传动,下列说法错误的是___。
 - A. 传动比不等于蜗轮与蜗杆分度圆直径比;
 - B. 蜗杆直径系数q越小,则蜗杆刚度越大;
 - C. 在蜗轮端面内模数和压力角为标准值;
 - D. 蜗杆头数 z_1 多时,传动效率提高。
- (9) 在蜗杆传动中,轮齿承载能力计算,主要是针对___来进行的。
 - A. 蜗杆齿面接触强度和蜗轮齿根弯曲强度;
 - B. 蜗杆齿根弯曲强度和蜗轮齿面接触强度;
 - C. 蜗杆齿面接触强度和蜗杆齿根弯曲强度;
 - D. 蜗轮齿面接触强度和蜗轮齿根弯曲强度。
- (10) 下列蜗杆直径计算公式: (a) $d_1 = mq$, (b) $d_1 = mz_1$, (c) $d_1 = d_2/i$,


	(d) $d_1 = r$	$nz_2/(i \cdot \tan x)$	λ), (e) a	$l_1 = 2a/i +$	-1,其中有	了是错误	是的 。
	A. 1个;				B. 2个;		
	C. 3个;				D. 4个;		
(11)	E. 5个。	44 立 上 八 4	r 7 <u>5</u> 4	. // -4- // .			
(11))对蜗杆传动		丌, 卜	J公 八 甲			
	$\mathbf{A.} F_{t1} = -F$; t2 ;			B. $F_{r1} =$	$=-F_{r2}$;	
	$C. F_{t2} = -H$	7 _{a1} ;			D. F_{t1}	$=-F_{a2}$ \circ	
(12)起吊重物用	的手动蜗	汗传动,自	·采用	娲杆 。		
	A. 单头、	小导程角;			B. 单头	、大导程角	有;
	C. 多头、	小导程角;			D. 多头	、大导程角	有。
四、判	引断题:						
(1)	由于蜗轮和!	蜗杆之间的	的相对滑动	的较大,夏	更容易产生	胶合和磨	粒磨损。
(2)	在蜗杆传动中	户比 $i = z_2$ /	z_1 中,蜗村	F头数 <i>z</i> ₁ 相	目当于齿数	,因此,其	分度圆直
	径 $d_1 = z_1 m$ 。						()
(3)	蜗杆传动的〕	正确啮合 象	条件之一是	蜗杆端面	模数和蜗车	论的端面模	数相等。
(4)	蜗杆传动的〕 同。	正确啮合 象	条件之一是	蜗杆与蜗	轮的螺旋角	角大小相等	、方向相 ()
(5)	为了提高蜗标	干的传动效	效率,可以	不另换蜗	轮,只需要	要采用直径	相同的双
	头 蜗 t	千代	替 原	来的	り 単	头 蜗	杆。
(6)	为使蜗杆传动	:h :th :6/5 il 12 <i>f</i> 2/	法 法市	一位 可	小 军田 豆 塚	五元 五元 五元	日電田一
(0)	个 双 头			原来		. , , , , ,	Jar.
	()	料 作	1人 首	凉	100 中	大 购	杆。
(7)	蜗杆传动的	正确啮合组	を供う 一島	基据标的 5	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	松的螺旋	鱼大小桕
\ I /	等 ,		方	向 向	相	元的绿灰 反	л / С/1.4П
	'1 ,		/-	1. 4	414		0

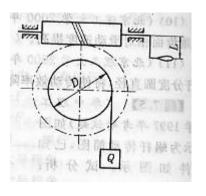
()

(8) 在蜗杆传动中,如果模数和蜗杆头数一定,增加蜗杆分度圆直径,将使 传动效率降低,蜗杆刚度提高。 (1)

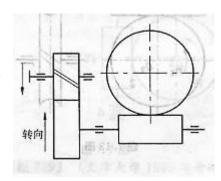

五、计算题:

- 1、如图所示为蜗杆传动简图,已知条件如图示。试分析:
 - (1) 在图 (b) 上用箭头表示蜗杆、蜗轮所受各力的方向 (F_t —圆周力, F_r —径向力, F_a —轴向力;脚标:蜗杆用"1",蜗轮用"2")。
 - (2) 在图(b)上标明蜗轮的转动方 向及其轮齿的螺旋线方向。

题 7-1 图


- 2、图示为二级蜗杆传动,已知蜗杆3的导程角的螺旋线方向为右旋,蜗轮4的转向如图所示,轴I为输入轴。试求:
 - (1) Ⅰ和轴Ⅱ的转向;
 - (2) 蜗杆、蜗轮的螺旋线方向(所有的);
 - (3) 蜗轮2和蜗杆3的所受各分力的方向。

题 7-2 图


(注:要求蜗轮2与蜗杆3的轴向力方向相反)

- 3、绞车采用蜗杆传动(如图所示),m=8mm,q=8, $z_1=1$, $z_2=40$ 卷筒直径 D=200mm,问:
 - (1) 使重物Q上升 1m,手柄应转多少圈? 并在图上标出重物上升时手柄的转向。
 - (2) 若当量摩擦系数 $f_v = 0.2$,该机构是否自锁?

题 7-3 图

- (3) 设Q = 1000 Kg,人手最大推力为 150N 时,手柄长度L的最小值。 (注: 忽略轴承效率)
- 4、图示斜齿圆柱齿轮一蜗杆传动,主动齿轮转动方向和齿的旋向如图示,设要求蜗杆轴的轴向力为最小时,试画出蜗杆的转向和作用在轮齿上的力(以三个分力表示),并说明蜗轮轮齿螺旋方向。

题 7-4 图

第七章 蜗杆传动答案

一、简答题:

略

二、填空题:

- (1) <u>齿面胶合、疲劳点蚀、磨损和轮齿折</u>断,蜗杆齿上。
- (2) <u>凑中心距和提高承载能力及传动效率</u>。
- (3) <u>64</u>, <u>200</u>, <u>21</u>, <u> z_1 </u>, <u>左</u>旋, <u>14.036°</u>。
- (4) $\underline{v_1/\cos\gamma}$, 胶合和磨损。
- (5) 两轴交错角为90⁰的蜗杆传动中,其正确的啮合条件是 $\underline{m_{g1}} = \underline{m_{f2}} = \underline{m}$, $\underline{\alpha_{g1}} = \underline{\alpha_{f2}} = \underline{\alpha}$ 和 $\underline{\gamma_1} = \underline{\beta_2}$ (等值同向)。
- (6) 闭式蜗杆传动的功率损耗,一般包括三个部分:<u>啮合功率损耗</u>,<u>轴承摩</u>擦损耗和搅油损耗。
- (7) 在蜗杆传动中,蜗杆头数越少,则传动效率越低,自锁性越好,一般蜗杆头数取 $z_1 = 1 \sim 4$ 。
- (8) 阿基米德蜗杆传动在中间平面相当于<u>齿条</u>与<u>齿轮</u>相啮合。
- (9) 变位蜗杆传动只改变<u>蜗轮</u>的尺寸,而<u>蜗杆</u>尺寸不变。
- (10) 在标准蜗杆传动中,当蜗杆为主动时,若蜗杆头数 z_1 和模数m一定时,增大直径系数q,则蜗杆刚度<u>增大</u>;若增大导程角 γ ,则传动效率<u>提高</u>。
- (11) 蜗杆传动发热计算的目的是防止温升过高而产生齿面胶合失效,热平衡计算的条件是单位时间内发热量 H_1 等于同时间内的散热量 H_2 。
- (12) 蜗杆传动设计中,通常选择蜗轮齿数 $z_2 > 26$ 是为了<u>保证传动的平稳性</u>; $z_2 < 80$ 为了防止<u>蜗轮尺寸过大引起蜗杆跨距大,弯曲刚度过低或模数过</u>

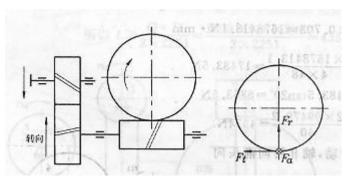
小,轮齿弯曲强度过低。

三、选择填空:

- (1) B

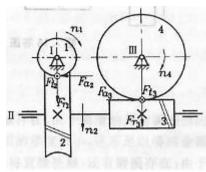
- $(2) A \qquad (3) B \qquad (4) C \qquad (5) D$
- (6) C (7) B (8) B (9) D (10) C

- (11) A (12) A


四、判断题:

- $(1) \times (2) \times (3) \times (4) \times (5) \times$

- $(6) \times (7) \times (8) \checkmark$


五、计算题:

- 1、解:(1)所受个力方向如图示。
 - (2) 蜗轮旋向为右旋。

题 7-1 解图

- 2、解: (1) 轴 Ⅰ 顺时针方向转动, 轴 Ⅱ 转向箭头向下;
 - (2) 所有蜗杆、蜗轮的螺旋线方向均为右旋;
 - (3) 蜗轮 2 和蜗杆 3 的所受各力方向如图示。

题 7-2 解图

3、 解: (1) *Q*上升 h:

$$h = n_2 \pi D = 1000 mm$$

$$n_2 = \frac{h}{\pi D}$$

$$i = \frac{n_1}{n_2} = \frac{z_2}{z_1} = 40$$

所以
$$n_1 = 40n_2 = 40 \times \frac{1000}{\pi \times 200} = 63.7$$
 圏

蜗杆转向箭头向下 (从手柄端看为逆时针方向)。

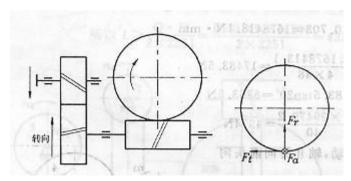
(2)
$$\tan \gamma = \frac{z_1}{q} = \frac{1}{8} = 0.125 < f_v = 0.2$$

所以
$$\gamma < \psi_v$$

故该机构自锁

$$(3) T_1 = P_1 L$$

$$T_{2} = T_{1} \cdot i \cdot \eta = T_{1} \frac{z_{2}}{z_{1}} \cdot \frac{\tan \gamma}{\tan(\gamma + \psi_{v})}$$


$$= P_{1}L \cdot \cdot 40 \cdot \frac{\tan \gamma}{\tan(\gamma + \psi_{v})}$$

$$= 40P_{1}L \frac{0.125}{\tan(7.125^{\circ} + 11.31^{\circ})} \le 40 \times 150 \times L \times \frac{0.125}{\tan(7.125^{\circ} + 11.31^{\circ})}$$

$$= 2251L$$

又
$$T_2 = Q \cdot \frac{D}{2} \le 2251L$$
所以 $L \ge \frac{Q \cdot D}{2 \times 2251} = \frac{1000 \times 9.8 \times 200}{2 \times 2251} = 435.6mm$

4、解: 蜗轮左旋, 顺时针转动。

题 7-1 解图